sábado, 9 de julio de 2011

Probabilidades











"Un hombre que viajaba mucho estaba preocupado por la posibilidad de que hubiera una bomba en su avión. Calculó la probabilidad de que fuera así y, aunque ésta era baja, no lo era lo suficiente para dejarlo tranquilo. Desde entonces lleva siempre una bomba en la maleta. Según él, la probabilidad de que haya dos bombas a bordo es infinitesimal."


"El siguiente resultado, bien conocido en probabilidad, es una buena ilustración de la sorprendente probabilidad de las coincidencias. Como el año tiene 366 días (incluimos el 29 de febrero), tendríamos que reunir 367 personas para estar seguros de que por lo menos dos personas del grupo han nacido el mismo día. ¿Por qué?
Ahora bien, ¿qué pasa si nos contentamos con tener una certeza de sólo el 50 %? ¿Cuántas personas habrá de tener el grupo para que la probabilidad de que por lo menos dos de ellas hayan nacido el mismo día sea una mitad? A primera vista uno diría que 183, la mitad de 366. La respuesta sorprendente es que sólo hacen falta veintitrés. En otras palabras, exactamente la mitad de las veces que se reúnen veintitrés personas elegidas al azar, dos o más de ellas han nacido el mismo día."

"La conclusión paradójica es que sería muy improbable que los casos improbables no ocurrieran. Si no se concreta con precisión cuál es el acontecimiento a predecir, puede ocurrir un suceso de tipo genérico de muchísimas maneras distintas.
En el próximo capítulo hablaremos de los curanderos y de los tele-evangelistas, pero ahora viene a cuento observar que sus predicciones suelen ser lo suficientemente vagas como para que la probabilidad de que se produzca un hecho del tipo predicho sea muy alta. Son las predicciones concretas las que raramente se hacen realidad. Que un político de fama nacional vaya a someterse a una operación de cambio de sexo, como predecía recientemente una revista de astrología y parapsicología, es considerablemente más probable que el hecho de que este político sea precisamente Koch, el alcalde de Nueva York. Que algún telespectador sane de su dolor de estómago porque un predicador televisivo atraiga los síntomas es considerablemente más probable que el hecho de que esto le ocurra a un espectador determinado. Análogamente, las políticas de seguros de amplia cobertura, que compensan cualquier accidente, suelen ser a la larga más baratas que los seguros para una enfermedad o un accidente concretos."

"Dos extraños, procedentes de puntos opuestos de los Estados Unidos, se sientan juntos en un viaje de negocios a Milwaukee y descubren que la mujer de uno de ellos estuvo en un campo de tenis que dirigía un conocido del otro. Esta clase de coincidencias es sorprendentemente corriente. Si suponemos que cada uno de los aproximadamente 200 millones de adultos que viven en los Estados Unidos conoce a unas 1.500 personas, las cuales están razonablemente dispersas por todo el país, entonces la probabilidad de que cada dos tengan un conocido en común es del uno por ciento, y la de que estén unidos por una cadena con dos intermediarios es mayor que el noventa y nueve por ciento.

Podemos entonces estar prácticamente seguros, si aceptamos estas suposiciones, de que dos personas escogidas al azar, como los extraños del viaje de negocios, estarán unidos por una cadena de dos intermediarios como mucho. Que durante su conversación pasen lista de las 1.500 personas que conoce cada uno (así como de los conocidos de éstas), y así sean conscientes de la relación y de los dos intermediarios, es ya un asunto más dudoso.
Las suposiciones en que basamos la deducción anterior se pueden relajar un tanto. Quizás el adulto medio conozca menos de 1.500 personas o, lo que es más probable, la mayoría de la gente que conoce vive cerca y no está dispersa por todo el país. Incluso en este caso, menos favorable, es inesperadamente alta la probabilidad de que dos personas escogidas al azar estén unidas por una cadena de como mucho dos intermediarios.
El psicólogo Stanley Milgrim emprendió un enfoque más empírico del problema de los encuentros fortuitos. Tomó un grupo de personas escogidas al azar, dio un documento a cada miembro del grupo y le asignó un «individuo destinatario» al que tenía que transmitir el documento. Las instrucciones eran que cada persona tenía que mandar el documento a aquel de sus conocidos que más probablemente conociera al destinatario, instruyéndole para que hiciera lo mismo, hasta que el documento llegara a su destino. Milgrim encontró que el número de intermediarios iba de dos a diez, siendo cinco el número más frecuente. Aunque menos espectacular que el argumento probabilístico anterior, el resultado de Milgrim es más impresionante. Aporta bastante a la explicación de cómo las informaciones confidenciales, los rumores y los chistes corren tan rápidamente entre cierta población.

"¿Y qué? Como la gente sólo suele prestar atención a los vencedores y a los casos extremos, ya sea en deportes, artes o ciencias, siempre hay una tendencia a denigrar a las figuras de hoy en día, tanto deportivas como artísticas o científicas, comparándolas con los casos extraordinarios. Una consecuencia de ello es que las noticias internacionales acostumbran a ser peores que las nacionales, que a su vez son peores que las estatales, las cuales son, por la misma regla, peores que las locales, que en última instancia son peores que las del entorno particular de cada uno. Los supervivientes locales de la tragedia acaban invariablemente diciendo en televisión algo así como: «No puedo entenderlo. Nunca había ocurrido nada parecido por aquí»."

John Allen Paulos, El hombre anumérico.


No hay comentarios:

Publicar un comentario